Maximal Operator in Variable Exponent Generalized Morrey Spaces on Quasi-metric Measure Space
نویسندگان
چکیده
منابع مشابه
Fractional Integral Operators in Generalized Morrey Spaces Defined on Metric Measure Spaces
We derive some necessary and sufficient conditions for the boundedness of fractional integral operators in generalized Morrey spaces defined on metric measure spaces. îâäæñéâ. áŽéðçæùâIJñèæŽ äëéæŽê éâðîæçñè ïæãîùââIJäâ àŽêïŽäôãîñèæ àŽêäëàŽáëâIJñè ûæèŽáñîæ æêðâàîŽèñîæ ëìâîŽðëîæï öâéëïŽäôãîñèëIJæï ŽñùæèâIJâèæ ᎠïŽçéŽîæïæ ìæîëIJâIJæ.
متن کاملLittlewood-Paley Operators on Morrey Spaces with Variable Exponent
By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.
متن کاملQuasi-metric Spaces with Measure
The phenomenon of concentration of measure on high dimensional structures is usually stated in terms of a metric space with a Borel measure, also called an mm-space. We extend some of the mm-space concepts to the setting of a quasi-metric space with probability measure (pq-space). Our motivation comes from biological sequence comparison: we show that many common similarity measures on biologica...
متن کاملLocalized Morrey-Campanato Spaces on Metric Measure Spaces and Applications to Schrödinger Operators
Let X be a space of homogeneous type in the sense of Coifman and Weiss and D a collection of balls in X . The authors introduce the localized atomic Hardy space H q D (X ) with p ∈ (0, 1] and q ∈ [1,∞] ∩ (p,∞], the localized Morrey-Campanato space E p D (X ) and the localized Morrey-Campanato-BLO space Ẽ p D (X ) with α ∈ R and p ∈ (0,∞) and establish their basic properties including H q D (X )...
متن کاملBoundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
The aim of this paper is to establish the vector-valued inequalities for Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g∗μ-functions, and their commutators on the Herz-Morrey spaces with variable exponentMK̇ p,q(·)(R n). By applying the properties of Lp(·)(Rn) spaces and the vector-valued inequalities for Littlewood-Paley operators and their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mediterranean Journal of Mathematics
سال: 2015
ISSN: 1660-5446,1660-5454
DOI: 10.1007/s00009-015-0561-z